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Abstract-A solution, similar to the Reynolds analogy solution for heat transfer and momentum. was 
developed for heat transfer between the outer surface of an annulus, formed by a stationary outer cylinder 
and a rotatable inner cylinder, and the Huid in the annulus; within the tluid, Taylor vortices and an 
imposed axial Row exist. To facilitate the solution, a three-part velocity profile was assumed, consisting of 
a laminar sub-layer adjacent to the annulus outer surface, a but% layer and a core region of constant 
velocity in the central part of the annular gap. Expressions were obtained for the thicknesses of and 
temperature drops across the laminar sub-layer and buffer layer. These were used to give Nusselt 

numbers, which were compared with those obtained experimentally. 

NOMENCLATURE 

aconstant [l +N’+(l -N2)/lnN]/ 

[2+(1 -N’)/lnN]; 
a dimensionless function ; 
a constant ; 
specific heat of fluid at 
constant pressure; 
annular gap width, (R,-R,); 

friction factor (various suffices); 
friction factor for Poiseuille flow; 
friction factor for Couette flow; 
friction factor for combined Taylor 
vortex and axial flows; 
heat-transfer coefficient; 
thermal conductivity of the fluid ; 
annulus radius ratio (R,/R2); 

Nusselt number (2hd/k); 
Prandtl number (C,vp/k); 
rate of heat transfer per unit area ; 
general radial coordinate ; 
radius of inner annular surface; 
radius of outer annular surface; 
axial Reynolds number (2u,,.d/~); 
temperature ; 
temperature difference; 
average temperature at a given section ; 
wall temperature; 
Taylor number, 0: R 1 t13/v2 

(narrow gap case, N = 0.955), 

2R2 R2 1 I( I3 

v’(R, + R2) 

(wide gap case, N = 0.8); 
critical value of Taylor number; 
average axial velocity at a 
given section ; 

L’, tangential velocity component; 

Cl,, tangential velocity of the rotor; 
+ 

0 9 frictional tangential velocity, 

c/(L>/p)“2 ; 
L’t distance from the heated surface; 

.s+, frictional distance from the heated 

surface, 
Y(L/P)1’2 

I’ 

Greek symbols 

+,, eddy diffusivity for heat; 

EM, eddy diffusivity for momentum; 

1’7 kinematic viscosity of fluid ; 

P? density of fluid ; 

T,,.I > wall shear stress due to 
Poiseuille flow; 

=w2, wall shear stress due to 
Couette flow; 

Tw3, wall shear stress due to combined 
Taylor vortex and axial flow; 

4, angular velocity of the inner 
annular surface. 

INTRODUCTION 

FOR THE case of zero axial flow of a fluid in an 
annulus, the outer wall of which is heated and the 
inner rotatable, heat transfer between the heated wall 
and the fluid relies only on the tangential velocity 
component, since the axial and radial components 
consist merely of fluctuations about zero velocity. 
Thus, in the analogy solution of Bjorklund and Kays 
[l], the assumed velocity profiles were based on the 
results of Pai [2], which indicated that the tangential 
velocity profile consisted of regions of large velocity 
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gradient, close to the annular boundaries, surround- 
ing a central region over which a constant velocity, 
equal to half of the inner cylinder peripheral velocity, 
prevailed. Hence, according to the analogy between 
heat and momentum transfer, the radial temperature 
distribution assumed in [1] consisted of a central 
region of constant temperature, bounded by regions 
of high temperature gradient, close to the annular 
boundaries. However, experimental radial tempera- 
ture profiles from [I] indicated that a small 
temperature gradient existed across the central 
portion of the gap. Despite the neglect of this 
temperature gradient, the results of this analogy 
solution were in reasonable accord with the experi- 
mental heat transfer measurements. Because of the 

authors’ interest in heat transfer in an annulus 
formed by a heated outer cylinder and an inner 
adiabatic rotating cylinder, with axial fluid flow, a 
similar analogy has been developed to take into 
account the effects of an imposed axial flow through 
the annulus. 

For the case of an imposed axial flow, both the 
tangential and axial velocity components have an 
associated mean velocity, whilst only the radial 
component consists of fluctuations about zero 
velocity. Thus, for this case, the choice of the velocity 

profile to be used in the analogy is less clear, since 
both axial and tangential velocity components could 
be important in the transfer of heat. However, shear 
stress investigations and velocity profile studies [3] 
indicated that the Taylor vortices, once extablished 
in the annulus, act as though the axial Ilow were not 
present; the only noticeable effect of the imposed 
axial flow is the delay of vortex onset. In addition, 

velocity measurements [3] demonstrated the domin- 
ance of the tangential velocity component in the 
Taylor vortex regime of flow, and, thus, it may be 

assumed that, in this regime, the mechanisms of heat 
transfer rely heavily on the tangential velocity 
profile. Hence, the assumed velocity profile, included 
in the present analogy, is based on the tangential 
velocity data from [3], although, as will be shown 
later, the effects of the imposed axial flow are implicit 
in the formulation of the analogy. 

The tangential velocity data [3] indicated that the 
velocity data of Pai [2] was erroneous; the velocity 
across the centre of the gap was not found to be 
constant, a small velocity gradient being observed, in 
accord with [4]. According to momentum transport 
theory, there should likewise be a small temperature 
gradient across this same central portion of the gap, 
as was observed in [I]. It was thought desirable to 
include the effects of this temperature gradient in the 
present analogy solution, for that solution to truly 
represent the actual flow conditions prevailing. 

However, Taylor [4] and Flower [5] indicated 
that momentum transport theory is only applicable 
in the vicinity of the annular boundaries. Taylor, in 

particular, showed that the radial temperature 
distributions derived from his velocity data by the 
momentum transport theory were in disagreement 

with those actually obtained across the central 
portion of the gap. This finding is also implicit in the 
theoretical model of Batchelor [6] and stems from 
the consideration that, in Taylor vortex how, the 
vortices effecting heat transfer are not small com- 
pared with the gap width. In addition, the vortices 
lack a net component of motion perpendicular to the 
heat transfer surface. Consequently, the concept of 
eddy dilfusivity, in the classical sense, is inapprop- 
riate in this case; instead, the processes of convection 
are associated with the internal motions of the 
individual large vortices. This mechanism of heat 

transfer may be referred to as vorticity transport 
theory, which differs from the more familiar momen- 

tum transport theory in that there is no general 
correspondence between the heat transferred and the 
local temperature gradient. 

Thus, for the present case, the effects of the 

predicted temperature gradient across the centre of 
the gap cannot be included in the formulation of the 
analogy between heat and momentum transfer. 
Neglect of this temperature gradient in [I] did not 
lead to serious differences between the predicted and 
measured values of Nusselt number, and this fact, in 
conjunction with the improved velocity data avail- 

able to the authors, suggests that the present analogy 
should yield results in reasonable agreement with 

experimental measurements. 

VELOCITY PROFILES ASSUMED FOR 
THE ANALOGY SOLUTION 

The only velocity information required for the 
present analogy relates to the boundary layers close to 
the outer annular surface (heat-transfer surface) where 
the heat and momentum transfer analogy is applicable. 
Such information is not required at the inner wall, since 
it is assumed that no heat transfer occurs there. Also, in 
thecentral portionofthegap,since theanalogy between 
heat and momentum transfer is not applicable, such 
information cannot impart knowledge of the tempera- 
ture profiles obtaining. 

The velocity distribution close to the outer annular 
wall was assumed to be similar to that obtained in the 
boundary layers of turbulent duct Row, modified to fit 
phenomena observed in the present situation, A three 
part velocity profile was assumed, consisting of a 
laminar sublayer adjacent to the outer annular surface, 
a buffer layer and finally a core region of constant 
velocity spanning the central portion of the gap. The 
assumed velocity distributions obtaining in the 
boundary layers cannot be compared with the velocity 
data of [3], since it was impossible to take accurate 
velocity measurements in the region of low velocity 
close to the outer wall. 

FRICTION FACTORS IN COMBINED TAYLOR 
VORTEX AND AXIAL FLOW 

The present analogy solution requires the defi- 
nition of three friction factors, applicable to 
Poiseuille How (pure axial how), Couette Row 
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(laminar rotational Row) and to combined Taylor 
vortex and axial flows, necessary for the de- 

termination of the laminar sublayer and buffer layer 
thicknesses. 

(a) Fricticinfhctorjh Poiseuille,pow, f, 
The shear stress of Poiseuille flow may be shown 

to be: 
n2Re_ 

I Y 

7,,1 = -. 

ApdRz 

A friction factor for laminar, fully developed axial 

how may be defined as: 

From (I) and (2) 

8(i -N) 
,f; = p. 

ARe, 
(3) 

(b) Frictiotl,fhctor,fbr Couettejow, f2 
For the narrow gap case (i.e. N-+1), the straight 

line velocity profile of Couette flow results in a 
constant velocity gradient across the gap equal to 
c,,/d). Thus, for this flow, a friction factor can be 
defined as: 

W/d f,=“Z=- 
PV,2/2 pv,2/2 

Noting that, 

u2d3 
Ta = 5 

v2R, 
(narrow gap assumption), 

(4) becomes 

(c) Friction ,fhctor ,fbr combitted Taylor vortex and 
axialjows, f3 

Let 

Since the velocity distribution for this flow is not 
known, and cannot be easily formulated mathemat- 
ically, there exists no simple equation for 7,,,3, such as 

those for Poiseuille and Couette flows. However, in 
[3] it was shown experimentally that: 

(7) 

Now from equations (2) and (6), it may be shown 
that: 

2( I - N)2 Re, 7N,3 
.f3 = ANTaT’ 

WI 
63) 

THICKNESSES OF LAMINAR SUBLAYER 
AND BUFFER LAYER 

(a) Lamirlar sublayer 
The velocity distribution in the laminar sublayer 

was assumed to be of the form: 

v+ - - Y+, (9) 

where u+ is the tangential friction velocity obtaining 

at Y+, the non-dimensional radial distance from the 

heated surface. 
The velocity data of [3] and the results of El- 

Shaarawi [7] indicate that, in the laminar, pre-vortex 
regime, the axial and tengential velocity profiles are 
independent, each attaining the fully developed 
profile identical to that for pure axial and pure 
rotational flows respectively. Thus, the point of 
critical stability is assumed to occur when the 
tangential laminar sublayers, growing with increase 
in Ta for a given Re, on the annular boundaries, 
occupy the entire gap. El-Shaarawi [7] showed that, 
in a finite annular gap, the boundary layers growing 
on the flow boundaries were not symmetrical. but 
that, for decreasing gap width (i.e. N-t l), the 
boundary-layer thicknesses approached equality. 
Thus, for Couette flow, and assuming that N+ 1, the 
sublayers will meet at the mid-gap point, at which 
position the tangential velocity is equal to half the 
rotor velocity. 

It is well known that Taylor vortices first appear 
near to the inner rotating wall and this is usually 
taken as the critical condition. After this initial onset, 
a further increase in the Taylor number causes the 
vortices to expand towards the outer stationary wall. 
Also the authors have shown [IS], by shear stress 
measurements taken at this wall, that, for the case of 
an imposed axial laminar flow, the effect of vortex 
flow (viz. a sharp increase in shear stress) is not 
noted until a Taylor number, much higher than the 
accepted critical value for the prevailing conditions, 
is reached. Hence, criticality, for the purpose of the 

present study, was not defined by critical vortex 
onset but by the close approach of the vortices to the 
outer wall, when they begin to affect both heat 
transfer and shear stress. It must also be assumed 
that the vortices have a negligible on the Couette 
velocity profile until the critical Taylor number, 
obtained from shear stress measurements, has been 
obtained. Under these conditions of criticality, 
equation (9) becomes: 

(JO) 

where y: represents the non-dimensional distance 
from the heated surface to the edge of the laminar 
sublayer. Under these postulated conditions, Couette 
flow was assumed to prevail, and, therefore, r,V2 was 
used. Now, from equations (4), (5) and (IO), it may 
be shown that: 

(b) B@r layer 

For the buffer layer, a Karman-Nikuradse type of 
velocity profile was assumed, of the form: 

v+ =c[lfln (iq>J. (12) 
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The value of A, a constant, for the present case was 
chosen to maintain continuity of slope at the 
junction of the laminar sublayer and the buffer layer. 
From equations (I 1) and (9), it can be seen that: 

‘.‘A 

with any Reynolds analogy solution, whilst others 
result from the particular flow being investigated. 
These assumptions are as follows: 

(i) The laminar sublayer and buffer layer were 
considered sufficiently thin such that the shear stress 
and heat flux through them could be considered 
constant at t,,. and 4 respectively. 

(ii) The radius ratio was assumed to approach 
unity (i.e. narrow gape case) to allow the use of a 
simplified shear stress equation: 

and continuity of slope is maintained if 

1 WEi, “a 

“=2 cx i > 

Therefore, the assumed velocity profile becomes: 

which can be rewritten as: 

j.+ = ~~~~“4expr2(~)“4~:+ - I]. (14) 

From the velocity data of [3], the tangential velocity 
component of Taylor vortex flow was shown to be 
character&d by a flattened central portion, bounded 
by regions of high velocity gradient, close to the 
annular boundaries. Although the velocity at the 
outer edge of this flattened region did not bear a 
direct relationship to the rotor velocity, it was found 
to correspond approximately to L’ = v,./3 at the 
higher Taylor numbers investigated. Bjorklund and 
Kays [II assumed that the velocity at this point, in 
the case of zero axial Row, corresponded to L? = 1),/2, 
but the present results indicate that this assumption 
did not apply with imposed axial flow. Hence, 
assuming that the velocity at the edge of the buffer 
layer is equal to ~$3, the frictional tangential velocity 

there becomes: 

(iv) The Prandtl number is assumed to equal 
unity. For air, this condition is closely approximated. 

(v) Fully developed flow conditions prevail. 
(vi) Temperature drops only occur across the 

laminar subiayer and buffer layer at the outer 
annular surface; the remainder of the annular gap is 
assumed to be a region of constant temperature. 

On the basis of these assumptions, the temperature 
drops across the sublayers were assessed as follows. 

(b) Lurnirmr sublqer 
Heat transfer occurs by conduction in this 

sublayer. 

C,p 1’ d T 
or G=----_ 

(15) 
Pr d) 

Integrating over the laminar sublayer yields: 

5 w,3r the shear stress due to combined Taylor vortex 
and axial flows, is used in equation (14), as the buffer 
layer only exists under such flow conditions; it does 
not exist in the laminar pre-vortex regime. 

From equations (6), (14) and (15), it may be 
shown that: 

where ~1: is the non-dimensional distance from the 
heated surface to the edge of the buffer layer. 

The buffer layer is considered to be a turbulent 
region, and thus the shear stress dependency 
becomes : 

TEMPERATURE DROPS ACROSS THE LAMINAR 
SUBLAYER AND THE BUFFER LAYER 

(a) Assumptiorrs of’ the CuKJlogy solution 

A number of simplifying assumptions are required 
to allow solution of the present analogy. Some of 

where zh is the shear stress obtaining across the 
buffer layer. Also, 

these stem from the usual simplifications associated 

(17) 

For the finite gap case, dv/dy might more properly 

have been replaced by (dvid.)-ri_r) for transport of 
moment of momentum; however, u/y becomes small 
relative to do/d!, with decreasing gap width, and 
equation (I 7) adequately describes the narrow gap 
shear stress relationship. 

(iii) The eddy diffusivities for heat and momentum 
were assumed to be equal. 

(18) 

(19) 

(20) 

Therefore, from equation (I I ), 

(21) 

(c) Bz@r Iayer 

dt) 
rfi = (l’+r:,)(,- 

dy 
(22) 
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and differentiation of the assumed buffer layer 

velocity profile, equation (I 3), yields: 

(24) 

Combining (22), (23) and (24) gives: 

(25) 

From assumption (i), T,, = T, and hence equation 
(25) becomes: 

‘14 
- I’. (26) 

In the buffer layer, heat transfer occurs by forced 
convection due to the turbulent nature of that 

region, and so 

& = ,,C,lc,,+k:rrC,)~, 
where (i,, is the heat-transfer rate, per unit area of 
heated surface, across the buffer layer. Thus, invok- 
ing assumption (i), i.e. (j,,= 4, and integrating over 

the width of the buffer layer, yields: 

From assumption (iii), <:M = I+,, and substituting for 

(:M from equation (26), the temperature drop across 
the buffer layer becomes: 

dy+ X 
lr4 

- 1. (29) 

Integrating the right hand side of equation (29) and 

substituting in the limits of J: and JI:, as given by 
equations (1 1) and (I 6), gives: 

Hence the total temperature drop across the laminar 
sublayer and buffer layer, which according to 
assumption (vi) is the only temperature drop 
occurring across the gap width, becomes from 
equations (21) and (30): 

Let 

B=Pr+ln{l+Prexp[(g)lr’ 

X $1’:’ - *]-PI) 

;, AT= &[;j”z;[~]“4B. 
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(32) 

(33) 

DERIVED NUSSELT NUMBER RELATIONSHIP 

It may be shown by dimensional analysis that for 
combined Taylor vortex and axial flows 

Nu = 4(Re,, Ta, Pr). 

The Nusselt number is defined as 

2hrl 

N”=k 

Hence, from (6), (7), (8) and (34), and noting that 

7,v3 = 73, it may be shown that: 

N” = B(/$Y:{;j::;QY,h,,5. WI 

Also from (32), 

exp [i(y)“4(&)“2 
Re-0.5 T$.‘325 T@“” _ 1 -pr 0 

I i 
(36) 

Equations (35) and (36) represent the correlation 

equation for the heat transfer characteristics of 
combined Taylor vortex and laminar axial flows, as 
derived from the analogy between heat and momen- 
tum transfer. The equations, as presented, are 
applicable to the secondary regime of flow, referred 
to in [S]. However, the results of [8] also indicated 
that a tertiary regime of tlow existed at the lower 
axial Reynolds numbers investigated, which was 
characterised by a further increase in slope of the 
shear stress vs Taylor number graph. For this 

regime, the results were still correlated by equation 
(7), but the exponent, II, of this equation was altered 
to 1.022 for Re, = 300 and 0.927 for Re, = 400. 
Hence equations (35) and (36) may also be used to 
determine the heat-transfer characteristics of the 
tertiary regime, provided that the exponents of Ta 
and Tu, are altered accordingly. 

RESULTS OF THE ANALOGY SOLUTION 

Bjorklund and Kays [I] derived a similar, 
although simpler, equation to that presented in 

equations (35) and (36). For a Taylor number in 
excess of 8000, the Nusselt number was found to 
depend on Tu~.~*~, compared with Tao.3675 (equa- 
tion 35). Thus, despite the fact that different velocity 
and shear stress data were used in the two analogy 
solutions, and that one is applicable to zero axial 
flow whilst the other includes the effects of an 
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imposed axial flow, both solutions yield a similar 
functional dependency of Nusselt number on Taylor 
number. This similarity stems mainly from the 
agreement of the shear stress study of [S] with the 
results of Taylor [4], which were used by Bjorklund 

and Kays [I]. 
The results of the analogy solution for N = 0.955 

and 0.8 were calculated from equations (35) and (36), 
using the values of Ta, as given in Table 1. These 
results are presented in Figs. l(a) and (b). The range 
of variables used was identical with that of [3], i.e. 
300<Re,,< 1600, 7h,<Ta<2 x 106. 

From Figs. l(a) and (b), it can be seen that in the 

primary regime, where vortices are absent or are 
present but unimportant, a constant value of Nusselt 
number prevails. Evaluation of equations (35) and 
(36) at criticality (i.e. Tu = Tu,) gave. for each radius 
ratio, a similar value of calculated Nusselt number, 
regardless of the superimposed axial Row. These 
values of Nusselt number prevailing at critical 
conditions were averaged, and this mean value was 
plotted in Fig. I(a) and (b), where it was assumed to 
apply to the whole of the primary regime. The 

average values of Nusselt number were determined 

Re,=300 

/ 

N=0.955 

Taylor number, To 

FIG. I. Results of Reynolds analogy solution. 

Table I. Variation of critical Taylor number with axial 
Reynolds number 

Re, 7% 

200 28,000 
400 41,000 
600 62,000 
800 78,000 

IO00 84,000 
I200 I 10,000 
1400 I 19,oc)o 
1600 142,ooo 

as 4.902 for N = 0.955 and 4.783 for N = 0.8, which 
may be compared with the theoretical values due to 
El-Shaarawi [7] of 4.823 and 4.697 for N = 0.955 
and 0.8 respectively. In [3] it was shown that, 
according to the analogy between heat and momen- 
tum transfer, the shear stress results obtained for the 
primary regime predicted a constant value of Nusselt 
number throughout that regime. Although the 
present analogy solution does not apply to the 
primary regime, at the limiting conditions of 2% 
= Ta, (the demarcation between the primary and 
secondary regimes), the analogy solution does yield 
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an approximately constant value of Nusselt number, 

justifying the assumption of a uniform Nusselt 
number in the primary regime. Thus, the predicted 
heat-transfer characteristics of the primary regime 
are in accord with those found by previous workers 

[7,9, 10, 1 I]. 
The analogy solution demonstrates the stabilising 

effect of an axial Row, and, after criticality, the 
constant rise in Nusselt number with Taylor number. 
Also, it can be seen that for a given value of Taylor 
number, the prevailing Nusselt number decreases 
with increasing axial Reynolds number, emphasising 
the damping effect of the imposed axial flow on the 

internal motions of the vortices. 
Figures I (a) and (b) also indicate that there is little 

difference between the Nusselt numbers obtaining 
under given conditions of Taylor and axial Reynolds 
numbers for both radius ratios (N = 0.955 and 0.8), 
although those for N = 0.8 are always slightly lower 
than those for N = 0.955. Thus, this solution implies 
that, under given conditions, the prevailing Nusselt is 
virtually independent of radius ratio. 

COMPARISON OF NUSSELT NUMBERS 
OBTAINED BY EXPERIMENT AND BY THE 

REYNOLDS ANALOGY SOLUTION 

The apparatus used for the determination of the 
experimental Nusselt numbers is described in [3] 
and is shown diagrammatically in Fig. 2. In essence, 
it consisted of a vertical concentric annulus, through 
which the working fluid, air, was passed. It was 
comprised of a stationary steel tube of I.D. 139.7 mm 
and an inner rotatable cylinder of Tufnol, a good 
thermal insulator chosen to ensure adiabatic con- 
ditions. Two such cylinders existed of diameters 
133.4 mm and 1 Il.8 mm, giving radius ratios of 0.955 
and 0.8 respectively; the length of these cylinders was 
I .82 m 

(4 equlspaced) 

punth contabhg vorlable speed 
drive for Inner cylinder 

, I 

FIG. 2. Diagram of apparatus. 

The stationary steel tube was heated by condens- 
ing wet steam and so the outer surface of the annulus 

was isothermal while the inner surface should have 
been adiabatic. However, it was found during the 
course of the experiments that heat was transferred 
to a small extent through the inner cylinder and so 
the latter condition was not fulfilled. 

To permit the measurement of velocity and 
temperature profiles as the flow developed through 
the annular gap, 29 measuring stations were pro- 
vided. These stations were arranged in four vertical 
lines at 90 intervals along the length of the gap. 
Three of the lines had seven stations while a fourth 
had eight. The stations were not equispaced but were 

concentrated at each end of the annular gap to 
permit study of the entrance region. 

To obtain the value of average axial velocity in the 
annular gap necessary for the evaluation of the axial 
Reynolds number, velocity profiles were obtained 
across the gap, a reading being taken at every one- 
tenth of the gap. DISA hot wire anemometry 
equipment was .used for this determination. Radial 
temperature profiles across the annulus were also 
obtained. Since a suitable thermocouple probe was 
not commercially available for the measurement of 
temperatures in the gap, it was necessary to develop 
a special fine wire probe. The output of this probe 
was monitored by a Solartron data-logger system. 

The wall temperature, T,, was determined by 
positioning the probe flush to the outer wall. While it 
was recognised that small errors in this value could 
markedly affect the calculated values of the Nusselt 
number, the possibility of such errors was minimised 
by the use of a single probe to acquire all the 
temperatures across the gap. Accuracy was also 
aided by the good temperature resolution of the 
probe, viz 0.0625”C. 

Although the temperature gradients were esti- 
mated by visual means from graphs of temperature 
against radial distance, it should be noted that in the 

202, of the gap nearest to the outer stationary wall, 
nine equispaced readings were taken. Thereafter, 
readings were taken at every IO%, of the gap. 

Figure 3 is a typical carpet plot of radial 
temperature profiles for N = N = 0.955, Re, = I200 
and five values of Ta. It should be noted, however, 
that these particular profiles were not used as a 
source of values for Fig. 4(c). 

From the temperature gradients at the outer 
stationary wall, local values of the Nusselt number 
were calculated thus: 

Nu = 2d@TIdR) 

Tw-T,, ’ 

The Nusselt numbers are presented in Figs 4 and 5, 
for three values of axial Reynolds number, Re, 

= 400, 800 and 1200, and for two values of radius 
ratio, N = 0.955 and 0.8. These figures show the 
variation of local Nusselt number with Taylor 
number, plotted on logarithmic axes, for a given 
value of axial Reynolds number. Superimposed on 
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FIG. 3. Radial temperature profiles, N = 0.955, Re, = 1200. 

these figures are the lines which represent the results 
of the Reynolds analogy solution. For each Taylor 
number, between two and four tests were performed. 
In the figures, the range of the local Nusselt number 
obtained in these tests is shown with the mean value 
marked within that range. 

The general trends of the results of Figs. 4 and 5 
are seen to be in accord with those of previous 
investigations 19%111, in that the Nusselt number 

remains approximately constant in the primary 
regime, whilst in the secondary regime, the Nusselt 
number rises steadily with Taylor number. The 
demarcation between the two regimes is sharp, and 
the stabilising effect of the imposed axial flow is 
apparent. 

A detailed consideration of the results for N 
= 0.955 (Fig. 4) indicates that in the primary regime, 
although a considerable amount of scatter is ap- 
parent, the Nusselt number bears no relationship to 
the prevailing Taylor number, and can consequently 
be considered as a constant value. This constant 
value is less than that predicted by the analogy 
solution and by El-Shaarawi [7], which can be 
attributed to the effects of heat transfer at the rotor 
surface, causing a decrease in the average tempera- 
ture across the gap, which results in a lower value of 

Nusselt number. 
Considering Fig. 4(a), the critical Taylor number 

and the slope of the graph in the secondary regime, 
as found by experiment and theory, are seen to be in 
agreement. Unfortunately, the restricted Taylor 
number range allowed by this radius ratio only gave 

$ 6- 

E 
2 

I I I111111 I I , 

104 IO5 
Taylor number, Ta 

(b) 

I 1 I I1ll111 I 1 , 

104 I05 
Taylor number, Ta 

(c) 

FIG. 4. 
(a) Nusselt number vs Taylor number, 

N = 0.955, Re, = 400. 
(b) Nusselt number vs Taylor number, 

N = 0.955, Re, = 800. 
(c) Nusselt number vs Taylor number, 

N = 0.955, Re, = 1200. 

experimental results up to the predicted onset of the 
tertiary regime, and thus the existence of this regime 
could not be verified from these results. 

For Re, = 800 and 1200, the agreement is less 
good [Figs. 4(b) and (c)l. The experimentally 
determined value of critical Taylor number is slightly 
less than that obtained from the analogy and 
consequently the Nusselt numbers obtaining in the 
secondary regime are higher than predicted. The 
slope of the secondary regime is, however, similar for 
both cases. It should be noted that the limited Taylor 
number range of this radius ratio only allows the 
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= 0.955. However, in justification of this assumption, 

the critical values obtained by Coney [I I], when 
studying experimentally heat transfer through the 

outer stationary wall of an annulus of N = 0.897, are 
in close agreement with those of the present study, 
the mean difference between the two sets of results 
being 6.67,; for 3OO<Re,< 1600. A graph of these 

results appears in [8]. 
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The results for N = 0.8 (Fig. 5) show that the 
experimental measurements are generally confined to 
the secondary regime of flow, owing to the high 
values of Taylor number prevailing even at low 
rotational speed. Consequently, no conclusions can 
be drawn regarding criticality under such conditions. 

The spread of the data points in these figures is 
generally worse than was encountered for the case of 
N = 0.955 (Fig. 4), and this can be attributed to two 
effects. Firstly, the temperature probe, when pos- 
itioned in the central portion of the gap, indicated 

that temperature fluctuations were occurring as the 
vortices drifted past the sensor. This observation 
accords with Hoh et al. [12], who considered the 
axial variation of temperature along an annulus, 
subjected to Taylor vortex flow, but without axial 

flow, which exhibited a small sinusoidal disturbance 
in the axial temperature field. The larger, more 
vigorous vortices associated with the radius ratio of 

N = 0.8 caused greater fluctuations in temperature 
than for the case of N = 0.955, and result in less 
accurate radial temperature profiles and Nusselt 
numbers. Secondly, occasionally the radial tempera- 
ture profiles obtained from two traverses performed 
under identical conditions, but a short time apart, 
exhibited a marked change in shape, suggesting that 

the vortices had undergone a fundamental change. 
However, this effect occurred so infrequently that the 
postulated change in form could not be checked. 

I 
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FIG. 5. 
(a) Nusselt number vs Taylor number, 

N = 0.8, Re, = 400. 
(b) Nusselt number vs Taylor number, 

N = 0.8, Re, = 800. 
(c) Nusselt number vs Taylor number, 

N=O&Re,=lZOO 

For Re, = 400, [Fig. 5(a)] the experimental results 
are higher than those predicted theoretically in the 
secondary regime. However, the data points exhibit a 
slope, up to the maximum Taylor number of 2 x 106, 
similar to that of the analogy solution in the 
secondary regime. Thus the existence of the postu- 
lated tertiary regime is not confirmed by these 
experimental results. 

acquisition of results up to a maximum Taylor 
number of 200000, which are to be compared with 
an analogy solution applicable over the range, Ta, 

< Ta<2 x 106. Consequently, small errors in the 
determination of the critical Taylor number from the 
shear stress study of [3], which are subsequently 
included in the analogy solution, can easily result in 
the observed differences, when viewed over such a 
limited range. The values of critical Taylor number 
(Table 1) were assessed from the shear stress results 
taken on a rig of radius ratio N = 0.833, and were 
assumed to apply to the larger radius ratio, N 
H.M.1 22/5-u 

The results for Re, = 800 and 1200 [Figs 5(b) and 
(c)] also indicate that the theoretical values of 
Nusselt number are generally lower than those found 
experimentally, and that use of the analogy solution 
could lead, in the worst case, to an underestimate of 
approximately 40”/> in the value of the prevailing 
Nusselt number. 

Thus, for the case of N = 0.955, the analogy 
solution adequately predicted the Nusselt numbers 
obtaining in combined axial and Taylor vortex flows, 
allowing for the small differences induced by the use 
of a critical Taylor number applicable to a radius 
ratio of N = 0.833, discussed earlier. Although the 
agreement for the case of N = 0.8 was encouraging, 
it is considered that the analogy is only truly 
applicablZ to the narrow gap case. 
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The fact that the experimental results are essen- 
tially parallel to those of the “narrow gap” analogy, 
in the secondary regime, for both N = 0.955 and 0.8, 
lends some support to the mechanisms and flow 
regions postulated in the analogy. Thus, it is 
suggested that, accepting the imperfect represen- 
tation of the flow conditions obtaining in the wide 
gap case, the narrow gap analogy solution can be 
used to predict the Nusselt numbers prevailing under 
wide gap conditions. To achieve closer agreement 
between the predicted and experimental results for 
N = 0.8, an empirical factor should be introduced 
into the analogy solution. Whilst such an approach 
cannot be justified physically, it does allow the use of 
a simpler equation than would be derived from a 
‘wide gap’ analogy solution. 

Ackno&dgement-By permission of the Council of the 
Institution of Mechanical Engineers, Figs. 2 and 6 are 
reprinted from “The effect of Taylor vortex flow on the 
development length in concentric annuli” by Simmers and 
Coney, and Table 1 is reprinted from [8]. 
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SOLUTION SELON L’ANALOGIE DE REYNOLDS DU 
TRANSFERT THERMIQUE POUR DES ECOULEMENTS COMBINES 

AXIAUX ET A TOURBILLONS DE TAYLOR 

RksumLOn dtveloppe une solution, semblable a celle de I’analogie de Reynolds entre chaleur et 
quantitt de mouvement, pour le transfert thermique entre la surface externe d’une espace annulaire forme 
par un cylindre externe fixe et un cylindre interne tournant avec un fluide entre eux; il existe dans le 
fluide des tourbiilons de Taylor et un Ccoulement axial impose. 

Pour simplifier la solution, on suppose un profil de vitesse en trois parties avec une sous-couche 
laminaire adjacente a la surface externe, une couche intermediaire et un noyau a vitesse constante dans la 
partie centrale de I’anneau fluide. 

On obtient des expressions pour les epaisseurs et les chutes de temperature dans la sous-couche 
laminaire et la couche intermtdiaire. Ceci conduit aux nombres de Nusselt qui sont compares avec ceux 

obtenus experimentalement. 

EINE LijSUNG MITTELS DER REYNOLDS-ANALOGIE FUR DAS 
WARMEUBERGANGSVERHALTEN EINER KOMBINIERTEN AXIALPUND 

TAYLOR-WIRBEL-STROMUNG 

ZusammenfassungpEine Losung ahnlich der Reynolds-Analogie fur Wlrme- und Impulstransport wurde 
fur den Warmeubergang an der auBeren Fllche eines ringformigen Spalts entwickelt, der aus einem 
ruhenden Augenzylinder und einem rotierenden Innenzylinder besteht Im Fluid existieren Taylor-wirbel 
mit iiberlagerter axialer Stromung. Zur Vereinfachung der Losung wurde ein Geschwindigkeitsprofl 
angenommen, das aus drei Abschnitten besteht, nimlich aus einer laminaren Unterschicht an der AuB- 
enflache des Ringspalts, einer Pufferschicht und einer Kernzone mit konstanter Geschwindigkeit im 
Zentrum des ringformigen Spalts. Ausdriicke fur die Stlrke und den Temperaturabfall in der laminaren 
und in der Pufferschicht wurden formuliert. Diese wurden benutzt, urn NusselttZahlen zu bestimmen, die 

dann mit experimentell ermittelten verglichen wurden. 
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MCnOJIb30BAHBE AHAJIOl-L&i PE$iHOJIbACA )JJIJl OFIPE)JEJIEHtiR 
XAPAKTEPMaBK TEI-IJIOOEMEHA COBMECTHMX T%lJlEPOBCKHX BMXPEBbIX 

M AKCHAJIbHbIX IIOTOKOB 

AHHCVr~WS-C no~oqbw aHanorw PefiHonbAca nonyreH0 peueHHe 3aAaw 0 nepeHoce Tenna 

MeXCAy BHelUHefi nOBepXHOCTbI0 KOJlbUeBOrO KaHaJIa, o6pa3osaHHoro HenOABHXCHbIM BHeILIHHM 

u~nlMAp0~ H epaluatouvndcn BHYT~~HHHM IJKIIEIHA~~M, n x0iAKocTbko B 3a3ope rdexay HHMH npH 

yCJlOBHHHaJlOXCeHHIIHaaKCH~bHOeTe'leHHeT3fiJlOpOBCKUX B%iX@i.&TSl )'npOUeHEUl aHaJIH3anplmKT0, 

YTO npo@nb CKO~OCTH COCTOI~T w3 naMsiHapHor0 noncnor, npsineralouero K eHeuweii nosepxHoCTH 

3a3Opa, nepeXOAHOr0 CJIOl H o6nacm RA&la C nOCTOSlHHOfi CKOpOCTbIO, HaXOAnWeiiCK B UeHTpaJlbHOfi 

'IaCTHKOJIbIleBOrO 3a3Opa. nOn)",eHbl BbIpageHHn QrrR OnpeAeJIeHHn TOJIILlHHbl JlaMHHapHOrO nOACnOIl 

H nepexoAHor0 cnon, a Taue nepenanos TeMnepaTyp B Hx nonepeqHbrx ceqeHHKx. C noM0w.w 3T5ix 

CooTHoureHHA paCCW4TaHbI 3Ha'leHlfI wcna HyccenbTa, KOTopble 3aTebf 6bme conocTaBnew 

C 3KCnepHMeHTaJlbHbIMHAaHHbIMB. 


